翻訳と辞書
Words near each other
・ Integral closure of an ideal
・ Integral Coach Factory
・ Integral cryptanalysis
・ Integral curve
・ Integral domain
・ Integral education
・ Integral element
・ Integral Energy
・ Integral energy
・ Integral equation
・ Integral Equations and Operator Theory
・ Integral expression
・ Integral fast reactor
・ Integral field spectrograph
・ Integral Forex
Integral geometry
・ Integral graph
・ Integral House
・ Integral humanism
・ Integral humanism (India)
・ Integral humanism (Maritain)
・ Integral imaging
・ Integral Institute
・ Integral length scale
・ Integral lighthouse
・ Integral linearity
・ Integral logarithm
・ Integral membrane protein
・ Integral mission
・ Integral monotopic protein


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Integral geometry : ウィキペディア英語版
Integral geometry
In mathematics, integral geometry is the theory of measures on a geometrical space invariant under the symmetry group of that space. In more recent times, the meaning has been broadened to include a view of invariant (or equivariant) transformations from the space of functions on one geometrical space to the space of functions on another geometrical space. Such transformations often take the form of integral transforms such as the Radon transform and its generalizations.
== Classical context ==
Integral geometry as such first emerged as an attempt to refine certain statements of geometric probability theory. The early work of Luis Santaló and Wilhelm Blaschke was in this connection. It follows from the classic theorem of Crofton expressing the length of a plane curve as an expectation of the number of intersections with a random line. Here the word 'random' must be interpreted as subject to correct symmetry considerations.
There is a sample space of lines, one on which the affine group of the plane acts. A probability measure is sought on this space, invariant under the symmetry group. If, as in this case, we can find a unique such invariant measure, that solves the problem of formulating accurately what 'random line' means; and expectations become integrals with respect to that measure. (Note for example that the phrase 'random chord of a circle' can be used to construct some paradoxes.)
We can therefore say that integral geometry in this sense is the application of probability theory (as axiomatized by Kolmogorov) in the context of the Erlangen programme of Klein. The content of the theory is effectively that of invariant (smooth) measures on (preferably compact) homogeneous spaces of Lie groups; and the evaluation of integrals of differential forms arising.
A very celebrated case is the problem of Buffon's needle: drop a needle on a floor made of planks and calculate the probability the needle lies across a crack. Generalising, this theory is applied to various stochastic processes concerned with geometric and incidence questions. See stochastic geometry.
One of the most interesting theorems in this form of integral geometry is Hadwiger's theorem.
The more recent meaning of integral geometry is that of Sigurdur Helgason and Israel Gelfand. It deals more specifically with integral transforms, modeled on the Radon transform. Here the underlying geometrical incidence relation (points lying on lines, in Crofton's case) is seen in a freer light, as the site for an integral transform composed as ''pullback onto the incidence graph'' and then ''push forward''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Integral geometry」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.